Zhifang Wang, Ph.D. profile photo

Zhifang Wang, Ph.D.

Associate Professor and Graduate Program Director, Department of Electrical and Computer Engineering

Engineering West Hall, Room 208, Richmond, VA, UNITED STATES

(804) 828-5330 zfwang@vcu.edu

Dr. Zhifang Wang specializes in electric power grid vulnerability analysis, synthetic grid modeling, and renewable integration.

Publications

Documents

Audio

Video

Social

Biography

Zhifang Wang, Ph.D., joined the Department of Electrical and Computer Engineering faculty in August 2012. Dr. Wang is coming to VCU from the University of California, Davis. She received both the B.S. and M.S. degrees in Electrical Engineering from Tsinghua University, Beijing, China, and the Ph.D. degree in Electrical and Computer Engineering from Cornell University. She is a Senior Member of the IEEE, a member of IEEE Power & Energy Society, IEEE Communication Society, and IEEE Women in Engineering. Her current research focuses on cascading failures in power grids, energy system modeling and optimization, integration of renewable generation into power markets, and voltage stability and controls.

Industry Expertise

  • Education/Learning
  • Research
  • Electrical Engineering

Areas of Expertise

Cascading Failures in Power GridsEnergy System Modeling and OptimizationIntegration of Renewable GenerationVoltage Stability and ControlsSmart Grid Communication Architecture

Accomplishments

HICSS'48 Best Paper Award 2015

For the paper entitled "On Bus Type Assignments in Random Topology Power Grid Models", coauthored with Dr. Robert J. Thomas.

2017-05-23

IEEE Donald G. Fink Award 2013

For the paper entitled "For the Grid and Through the Grid: the Role of Power Line Communications in the Smart Grid," coauthored by Dr. Stefano Galli and Dr. Anna Scaglione.

2013-02-20

IEEE Senior Member | professional

In recognition of professional standing. Awarded by the Officers and Board of Directors of the IEEE.

2012-02-18

Education

Cornell University

Ph.D., Electrical and Computer Engineering

2005

Tsinghua University, Beijing,

M.S., Electrical Engineering

1998

Tsinghua University, Beijing,

B.S., Electrical Engineering

1995

Affiliations

  • Assistant Professor, Electrical and Computer Engineering, VCU
  • Director, EPES Lab, Electrical and Computer Engineering, VCU

Research Grants

Synthetic Data For Power Grid R&D, June 2016 - June 2018

DoE ARPA-e $ $1,028,325 (my share $230,000)

2016-06-30

The University of Illinois at Urbana-Champaign, with partners from Cornell University, Virginia Commonwealth University, and Arizona State University will develop 10 open-source and synthetic transmission system models and associated scenarios that match the complexity of power grids. By utilizing statistics derived from real data, the team’s models will have coordinates based on North American geography with network structure, characteristics, and consumer demand that mimics real grid profiles. Much of the developed software will be open source and available on the MATPOWER software suite as well as the GRID DATA repository.

view more

Courses

EGRE 471 Power System Analysis

Offered in spring semester. The course provides students with a comprehensive overview of electrical power system operation and design. It will develop models and tools for investigating system behavior, and provide opportunities for using the tools in design process.

EGRE 671 Power System Operation and Controls

This graduate level course covers the fundamental concepts of economic operation and controls of power systems, including real and reactive power balance, optimized generation dispatch, steady state an dynamic analysis, real-time monitoring and controls, and contingency analysis.

EGRE 573 Sustainable and Efficient Power Systems

The course covers distributed power generation system and renewable energy technologies. It develops models and tools for investigating electric power generation and efficiency analysis, the wind and solar power, energy storage, renewable integration and environmental impacts.

EGRE 336 Intro to Communication Systems

Introduction to the theory and application of analog and digital communications including signal analysis, baseband transmission, amplitude and angle modulation, noise model and effect, and design considerations.

EGRE 444 Communication Systems

The course covers the fundamental principles behind digital communications. The emphasis will be on the physical layer (i.e. digital transceiver design issues). The students are expected to gain a thorough understanding of digital communication systems, pulse modulation, digital modulation, detection and estimation for digital communications, information theory, as well as error control coding.

Selected Articles

Improved Synthetic Power Grid Modeling with Correlated Bus Type Assignments | IEEE Trans on Power Systems, Accepted for publication in Dec 2016, available in IEEE explorer.

*Seyyed H. Elyas, Zhifang Wang

This paper presents our study results on the correlated assignment of generation, load, or connection buses in a given grid topology and the development of an optimized search algorithm to improve the proposed synthetic grid model, called RT-nestedSmallWorld.

view more
Studying Cascading Overload Failures under High Penetration of Wind Generation | 2017 IEEE PES General Meeting, Chicago, IL, USA, July 16-20, 2017. Accepted, to appear.

*M. H. Athari, Z. Wang

In this study, the impacts of wind generation in terms of its penetration and uncertainty levels on grid vulnerability to cascading overload failures are studied. The simulation results on IEEE 300 bus system show that uncertainty coming from wind energy have severe impact on grid vulnerability to cascading overload failures. Results also suggest that higher penetration levels of wind energy if not managed appropriately will add to this severity due to injection of higher uncertainties into the grid.

view more
A Multi-objective Optimization Algorithm for Bus Type Assignments in Random Topology Power Grid Model | HICSS'49, Kauaui, HI, USA, Jan 2016.

*S. H. Elyas, Z. Wang,

With the help of Bus Type Entropy, a novel measure which provides a quantitative means to better represent the correlation of bus type assignments in a grid topology, we propose a multi-objective optimization algorithm for the bus type assignments in the random topology power grid modeling. The proposed search algorithm is able to locate the best set of bus type assignments for a given random "electrical" topology generated by RT-nested-smallworld.

view more
Optimized Solar Photovoltaic Generation in a Real Local Distribution Network | IEEE PES 2017 Innovative Smart Grid Technologies (ISGT2017) Conference, Arlington, VA USA, Apr 23-26, 2017.

*H. Sadeghian, *M. H. Athari, Z. Wang

This paper builds a simulation model for the local distribution network based on obtained load profiles, GIS information, solar insolation, feeder and voltage settings, and define the optimization problem of solar PVDG installation to determine the optimal siting and sizing for different penetration levels with different objective functions. The objective functions include voltage profile improvement and energy loss minimization and the considered constraints include the physical distribution network constraints (AC power flow), the PV capacity constraint, and the voltage and reverse power flow constraints.

view more
On Bus Type Assignments in Random Topology Power Grid Models | HICSS’48, Kauai, HI, Jan 2015.

Z. Wang, R. J. Thomas

This paper examined the correlation between the three bus types of G/L/C and some network topology metrics such as node degree distribution and clustering coefficient. We also investigated the impacts of different bus type assignments on the grid vulnerability to cascading failures using IEEE 300 bus system as an example. We found that (a) the node degree distribution and clustering characteristic are different for different type of buses (G/L/C) in a realistic grid, (b) the changes in bus type assignment in a grid may cause big differences in system dynamics, and (c) the random assignment of bus types in a random topology power grid model should be improved by using a more accurate assignment which is consistent with that of realistic grids.

view more