Yanping Ma

Associate Professor of Mathematics

  • Los Angeles CA UNITED STATES

Seaver College of Science and Engineering

Contact

Biography

Contact:
Phone: 310.338.5108
Email: Yanping.Ma@lmu.edu
Office: University Hall 2771

Dr. Ma's interests are in applied mathematics, especially in biomathematics. Dr. Ma received her Ph.D. in applied mathematics with a minor in statistics from Pennsylvania State University in 2011 and her B.S. from the University of Science and Technology of China in 2006. She joined the LMU faculty in 2011.

Education

The Pennsylvania State University

Ph.D.

Applied Mathematics

2011

The Pennsylvania State University

M.A.

Mathematics

2009

University of Science and Technology of China

B.Sc.

Mathmatics and Applied Mathematics

2006

Areas of Expertise

Modeling
Differential Equations
Data Analysis
Statistics
Applied Mathematics
Mathematics
Mathematical Modeling
Simulations
Latex
MATLAB
Mathematica
Scientific Computing
Numerical Analysis

Industry Expertise

Research
Education/Learning

Languages

  • English
  • Chinese

Availability

  • Keynote
  • Moderator
  • Panelist

Courses

MATH 120 PreCalculus

Fall 2020, Summer 2020, Fall 2011

MATH 122 Calculus I for Life Science

Spring 2021, Spring 2020, Spring 2019, Spring 2018, Spring 2017, Fall 2016, Spring 2016, Fall 2015, Spring 2014, Fall 2013, Fall 2012, Spring 2012

MATH 131 Calculus I

Summer 2019, Fall 2017, Summer 2012

Show All +

Articles

Application of population dynamics to study heterotypic cell aggregations in the near-wall region of a shear flow

Cellular and Molecular Bioengineering

Y. Ma, J. Wang, S. Liang, C. Dong and Q. Du

2010-02-28

Our research focused on the polymorphonuclear neutrophils (PMNs) tethering to the vascular endothelial cells (EC) and the subsequent melanoma cell emboli formation in a shear flow, an important process of tumor cell extravasation from the circulation during metastasis. We applied population balance model based on Smoluchowski coagulation equation to study the heterotypic aggregation between PMNs and melanoma cells in the near-wall region of an in vitro parallel-plate flow chamber, which simulates in vivo cell-substrate adhesion from the vasculatures by combining mathematical modeling and numerical simulations with experimental observations. To the best of our knowledge, a multiscale near-wall aggregation model was developed, for the first time, which incorporated the effects of both cell deformation and general ratios of heterotypic cells on the cell aggregation process. Quantitative agreement was found between numerical predictions and in vitro experiments. ...

View more

Population Dynamics Modeling of Heterotypic Cell Aggregations and Related Parameter Identification Problems

Ph.D. Thesis

Yanping Ma

2012-01-31

Cancer has been one of the leading causes of death around the world for decades. Metastasis, the spread of the tumor cells from the primary site to other locations in the body via the lymphatic system or through the bloodstream, is responsible for most of the cancer deaths. Massive experimental studies have been done in these areas. The work of this thesis brings together the experimental, numerical, and mathematical studies on the step of polymorphonuclear neutrophils (PMNs) tethering to the vascular endothelial cells (EC), and the subsequent melanoma cell emboli formation in a nonlinear shear flow, both of which are important in tumor cell extravasations from the circulation during metastasis.

View more

Injury-Initiated Clot Formation Under Flow: A Mathematical Model with Warfarin Treatment

Applications of Dynamical Systems in Biology and Medicine, The IMA Volumes in Mathematics and its Applications 158

L. de Pillis, E. Graham, K. Hood, Y. Ma, A. Radunskaya and J. Simon

2015-02-28

The formation of a thrombus (commonly referred to as a blood clot) can potentially pose a severe health risk to an individual, particularly when a thrombus is large enough to impede blood flow. If an individual is considered to be at risk for forming a thrombus, he/she may be prophylactically treated with anticoagulant medication such as warfarin. When an individual is treated with warfarin, a blood test that measures clotting times must be performed. The test yields a number known as the International Normalized Ratio (INR). The INR test must be performed on an individual on a regular basis (e.g., monthly) to ensure that warfarin’s anticoagulation action is targeted appropriately. In this work, we explore the conditions under which an injury-induced thrombus may form in vivo even when the in vitro test shows the appropriate level of anticoagulation action by warfarin. We extend previous models to describe the in vitro clotting time test, as well as thrombus formation in vivo with warfarin treatments. We present numerical simulations that compare scenarios in which warfarin doses and flow rates are modified within biological ranges. Our results indicate that traditional INR measurements may not accurately reflect in vivo clotting times.

View more

Show All +
Powered by