Ümit  Özgür, Ph.D. profile photo

Ümit Özgür, Ph.D.

Professor, Department of Electrical and Computer Engineering

Engineering West Hall, Room 340, Richmond, VA, UNITED STATES

(804) 828-2581 uozgur@vcu.edu

Professor Özgür specializes in optical spectroscopy and photonic devices



Image for publication on Zinc Oxide: Fundamentals, Materials and Device Technology







Dr. Özgür received his Ph.D. from Duke University in 2003 and worked at VCU as a postdoctoral research associate from 2003 to 2008 and as an instructor from 2007-2008. He joined VCU Electrical and Computer Engineering Department as an Assistant Professor in 2008. His primary experience is in optical characterization of dielectric and semiconductor materials and devices. He has been responsible for many contributions to the understanding of ultrafast carrier dynamics in nitride heterostructures, including generation and control of terahertz coherent phonons in nitride multiple quantum wells, and mechanisms limiting GaN-based LED efficiencies at high injection levels. His efforts also helped produce high quality GaN thin films with low dislocation densities and the best known carrier lifetimes. He has authored 1 book, 4 book chapters, and over 120 journal publications, contributed to more than 100 conference proceedings and presentations, and given 6 invited talks on growth, fabrication, characterization, and electronic and optoelectronic applications of semiconductor heterostructures, nanostructures, and devices. He has served as a principal investigator and co-principal investigator for several NSF, DoD, VCU, and industry funded projects. His current research focuses on ultrafast optical spectroscopy of semiconductor heterostructures and nanostructures, light emitting diodes for general lighting, zinc oxide electronics, perovskite solar cells, nanostructured biosensors, and pixel scale narrow bandpass filters for infrared spectroscopy. Dr. Özgür teaches courses on electromagnetic fields, electronic devices, microwave engineering, nonlinear optical materials and devices, and semiconductor optoelectronics and serves as the Graduate Program Director in the Electrical and Computer Engineering Department. He is a senior member of IEEE, member of APS, and member of SPIE.

Industry Expertise

  • Research
  • Education/Learning

Areas of Expertise

Ultrafast spectroscopyGroup III-nitride and zinc oxide optoelectronicsLight emitting diodesIII-V and II-VI semiconductor heterostructuresNonlinear opticsPhysics of semiconductor heterostructures


Duke University

Ph.D., Physics


Duke University

M.A., Physics


Bogazici University

B.S., Physics


Bogazici University

B.S., Electrical Engineering


Research Focus

Optical Spectroscopy

Current research focuses on synthesis of novel electronic materials, high performance UV/visible light emitters, dielectric and plasmonic optical narrow bandpass filters, and nanostructured biosensors. We use time-resolved and time-integrated optical characterization spectroscopy methods to evaluate the quality of materials and performance of devices.

Image for research focus on Optical Spectroscopy

Polarity control and residual strain in ZnO epilayers grown by molecular beam epitaxy

Cover picture - Phys. Stat. Sol. RRL

2016 We reported on the polarity control of ZnO grown by plasma assisted molecular beam epitaxy on (0001) GaN/sapphire template simply via the oxygen-to-Zn (VI/II) ratio during nucleation growth at 300 °C. The authors have demonstrated that ZnO polarity can be inverted, thus O-polar ZnO can be grown even if the (0001)GaN surface is kept under continuous Zn beam exposure prior to the nucleation growth. Following the Zn pre-exposure, ZnO nucleated with VI/II ratio below 1.5 showed Zn-polarity and those nucleated with VI/II ratios above 1.5 exhibited O-polarity. Scanning tunneling electron microscopy (STEM) imaging reveals that polarity inversion takes place without formation of any vertical inversion domain and within one monolayer of presumably non-stoichiometric GaOx at the interface. A direct correlation between polarity and residual strain sign was found. Zn-polar ZnO were under tensile biaxial strain whereas the O-polar material showed compressive strain. Moreover, the amount of strain varied linearly with the VI/II ratio used during low-temperature nucleation growth.

Image for research focus on Polarity control and residual strain in ZnO epilayers grown by molecular beam epitaxyview more

Energy Gap Tuning and Carrier Dynamics in Colloidal Ge1−xSnx Quantum Dots

2016 We studied the tunability of energy gap and carrier dynamics in colloidally synthesized 2.0±0.8 nm Ge1−xSnx QDs (x = 0.055 − 0.236) and developed a model for their radiative recombination pathways. Energy gaps at 15 K, as deduced from steady-state PL measurements, were confirmed to reach the visible spectral range, varying from 1.88 eV to 1.61 eV by changing Sn content from x = 0.055 to x = 0.236, respectively. Taking the size and compositional variation of these QDs into account, experimental energy gap values were fairly consistent with theoretically calculated ones. PL decay times were found to be 3 − 27 μs at 15 K due to the slow recombination of spin-forbidden dark excitons and recombination of carriers trapped at surface states. They dramatically decreased to 9 − 28 ns at room temperature owing to the thermal activation of spin-allowed bright excitons and carrier de-trapping from surface states.

Image for research focus on Energy Gap Tuning and Carrier Dynamics in Colloidal Ge1−xSnx Quantum Dotsview more

Research Grants

SusChEM: Synthesis and Structure-Property Elucidation of Direct-Bandgap Group IV Alloy Nanocrystals for Optoelectronic Applications

National Science Foundation

The production of high-efficiency optoelectronic materials based solely on low-cost, non-toxic, and abundant Group IV elements such as silicon is challenging as Group IV elements are less efficient in electron-photon conversion process compared to the widely used optoelectronic materials. This project utilizes the unique nanoscale size confinement effects and alloying with tin to produce silicon-tin, germanium-tin, and silicon-germanium-tin nanocrystals that exhibit superior light absorption and emission properties. The collaborative team supports the synthetic efforts along with advanced optical characterization and theoretical calculations to garner a deep understanding of the emerging materials properties and enhance the optoelectronic performance. The interdisciplinary research provides valuable training to the graduate and undergraduate students in the areas from smart material design to device testing. Other education and outreach activities include K-12 nanoscience outreach efforts and involving the under-represented high school students and women in summer research activities.

view more


Electromagnetic Fields

Fundamentals of engineering electromagnetics, including electrostatics, magnetostatics, electrodynamics, analysis and understanding of the phenomena associated with electric and magnetic fields, wave dynamical solutions of Maxwell's equations, reflection and transmission of electromagnetic waves in dielectric materials, waveguides and transmission line structures, and radiation from antennas.

view more

Microwave and Photonics Engineering

Wireless and optical communications applications of electromagnetic fields. Theory of microwave transmission line and waveguiding structures including impedance transformation and matching. Essential concepts from geometrical and physical optics and the interaction of photons with materials will be studied. Operating principles and design considerations of fiber optics, photodetectors and receivers are considered.

view more

Semiconductor Optoelectronics

Discussions of optical processes in semiconductors and semiconductor heterostructures in terms of radiative and nonradiative processes, as well as absorption. Also covers in depth the theory and practice of light-emitting diodes, including those intended for solid-state lighting, lasers and detectors.

view more

Nonlinear Optical Materials and Devices

Principles of nonlinear optics and operation of photonic devices and systems that utilize various second and third order nonlinear optical effects. The topics include electromagnetic wave propagation in anisotropic media, nonlinear optical susceptibility tensor, linear and quadratic electro-optic effects, second harmonic, sum-, and difference-frequency generation, phase-matching, parametric amplification, optical switching, multi-photon absorption, self-focusing and self-phase modulation.

view more

Selected Articles

Polarity Control and Residual Strain in ZnO Epilayers Grown by Molecular Beam Epitaxy on (0001)-GaN/Sapphire | Physica Status Solidi - Rapid Research Letters - Wiley


view more
Ultra-Small Ge1-xSnx quantum dots with visible photoluminescence | Chemical Communications - The Royal Society of Chemistry


view more
Optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3: theory and experiment | Physical Review B - Americal Physical Society


view more
Energy Gap Tuning and Carrier Dynamics in Colloidal Ge1-xSnx Quantum Dots | The Journal of Physical Chemistry Letters - American Chemical Society


view more
Lattice Parameters and Electronic Structure of BeMgZnO Quaternary Solid Solutions: Experiment and Theory | Journal of Applied Physics - American Institute of Physics


view more
Metal-Semiconductor Hybrid Aerogels: Evolution of Optoelectronic Properties in a Low-Dimensional CdSe/Ag Nanoparticle Assembly | ACS Nano - American Chemical Society


view more
Enhancement of Be and Mg incorporation in wurtzite quaternary BeMgZnO alloys with up to 5.1 eV optical bandgap | Journal of Crystal Growth - Elsevier


view more
Ballistic transport in InGaN based LEDs: impact on efficiency | Semiconductor Science and Technology - Institute of Physics

2011, Topical issue in honor of the Nobel Laureate Zh. I. Alferov

view more
GaN-based Light-Emitting Diodes: Efficiency at High Injection Levels | Proceedings of the IEEE


view more
ZnO Devices and Applications: A review of current status and future prospects | Proceedings of the IEEE


view more
A comprehensive review of ZnO materials and devices | Journal of Applied Physics - American Institute of Physics


view more