Director, Center for Lighting Enabled Systems & Applications (LESA) & Professor, Electrical, Computer, and Systems Engineering | Center for Lighting Enabled Systems & Applications (LESA), Electrical, Computer, and Systems Engineering
Troy, NY, UNITED STATES
Develops advanced optoelectronic systems for lighting and display applications.
Ph.D., Physical Chemistry
1979
B.S., Chemistry
1973
LightED print
2021-05-17
Robert Karlicek and Dennis Shelden, the heads of two prominent research centers at Rensselaer Polytechnic Institute, will serve as co-directors of the new Rensselaer Institute for Energy, the Built Environment, and Smart Systems (EBESS).
view moreScienceDaily
2018-02-23
"Today, the field of lighting and health care is undergoing rapid development," said Robert F. Karlicek Jr., LESA director, who also serves as a professor in the Department of Electrical, Computer, and Systems Engineering at Rensselaer. "As research continues to build the link between lighting spectral power distributions and wellness, LED lighting technology strives to bring new healthy lighting to market. Often commercialization in this capacity happens without establishing the clinical data to demonstrate a value-added benefit for patients or the providers, or a defined return on investment for the health-care industry."...
view moreLED Magazine
2019-02-21
Having presented at Strategies in Light two years back, Vital Vio executive Colleen Costello will stand at the podium this time with well-known researcher Robert “Bob” Karlicek to explain how LED-based continuous disinfection can be merged with connected lighting technology to optimize the antimicrobial capability of LEDs. It’s shaping up to be a truly exciting market with many opportunities for solid-state lighting (SSL) to evolve and enable a multitude of novel applications. Keep reading for insight into this double-duty technology and join us at Strategies in Light in Las Vegas next week...
view moreAdvanced Optical Materials
Jeffrey Y Tsao, Mary H Crawford, Michael E Coltrin, Arthur J Fischer, Daniel D Koleske, Ganapathi S Subramania, George T Wang, Jonathan J Wierer, Robert F Karlicek Jr
2014
Solid‐state lighting has made tremendous progress this past decade, with the potential to make much more progress over the coming decade. In this article, the current status of solid‐state lighting relative to its ultimate potential to be “smart” and ultra‐efficient is reviewed. Smart, ultra‐efficient solid‐state lighting would enable both very high “effective” efficiencies and potentially large increases in human performance...
Applied Physics Letters
RJ Shul, GB McClellan, SA Casalnuovo, DJ Rieger, SJ Pearton, C Constantine, C Barratt, RF Karlicek Jr, C Tran, M Schurman
1996
Inductively coupled plasma (ICP) etch rates for GaN are reported as a function of plasma pressure, plasma chemistry, rf power, and ICP power. Using a Cl2/H2/Ar plasma chemistry, GaN etch rates as high as 6875 Å/min are reported. The GaN surface morphology remains smooth over a wide range of plasma conditions as quantified using atomic force microscopy...
Journal of Magnetic Resonance
RF Karlicek Jr, IJ Lowe
1980
An NMR technique for measuring the diffusion constant D in the presence of a large nonuniform background magnetic field gradient G0 is presented. The technique uses a Carr-Purcell-Meiboom-Gill of pulse train that attenuates the effects of diffusion due to the background gradient, interspersed with an alternating pulsed field gradient sequence (APFG) that attenuates the observed echo in the presence of the known applied gradient. Calculations for the observed echo amplitude are presented that show the APFG technique eliminates contributions from the cross term between the background and applied gradients...