Ian Renfrew profile photo

Ian Renfrew

Professor of Meteorology


His expertise is in the impact of weather systems on climate change.







Image for vimeo videos on Greenland Flow DIstortion experiment ReportImage for vimeo videos on Journey to a frozen land (UEA Christmas lectures for children 2015)Image for vimeo videos on Rain Plane (Diamet Project)



Ian Renfrew is Professor of Meteorology in the School of Environmental Sciences at UEA. His expertise is in the impact of weather systems on climate change. In particular he examines smaller scale weather systems and their affect on the oceans – the exchange of heat and momentum with ocean water. Examples of such weather systems are polar lows and topographic winds. He looks at the underlying science and patterns of how the atmosphere and the ocean engage with each other – and how the associated data and models can achieve more accurate climate change predictions and more precise weather forecasting. He has especially explored the impact of weather from Polar regions – and how sea ice and the atmosphere tend to interact with each other.

Ian has worked for the British Antarctic Survey and was an early career researcher at the University of Toronto. He has been awarded the Adrian Gill Prize from the Royal Meteorological Society, which recognises significant multi-disciplinary meteorological research achievements. Ian is a member of the Met Office Strategic Advisory Committee, the Scientific Steering Group of the World Meteorological Organisation’s World Weather Research Programme’s Polar Prediction Project.

Areas of Expertise

AtmosphereEnvironmental SciencesWeather SystemsMeteorologyClimate Change


Bjerknes Visting Fellowship


The Adrian Gill Prize from the Royal Meteorological Society

2018 Recognising significant multi-disciplinary meteorological research achievements over the preceding 5 years.

Visiting Professorship, University of Toronto



University of Edinburgh

B.Sc., Mathematics


University of Reading

Ph.D., Meteorology


Media Appearances

Our ocean currents are changing, and scientists are searching for answers

The Week  online


"One of the pioneering aspects of this project is observing the changes in the ocean and observing the changes in the atmosphere at the same time," says Ian Renfrew, a meteorologist at the University of East Anglia in the U.K. who coordinated the work of the plane with that of the ship.

view more

Declining winter sea ice near Greenland spells cooler climate for Europe

The Conversation  online


One of the most dramatic features of recent climate change is the decline of summer Arctic sea ice. The impacts of this summer ice loss on northern society, on Arctic ecosystems, and the climate both locally and further afield, are already being felt.

view more

Violent polar storms help control the world's weather Read more: https://www.newscientist.com/article/mg21628964-600-violent-polar-storms-help-control-the-worlds-weather/#ixzz6ZSORHKXM

NewScientist  online


But without the storms, the rest of the world could face weather disruption. They are vital to the global thermohaline circulation in the ocean, which underpins ocean currents and weather systems, say Alan Condron at the University of Massachusetts, Amherst, and Ian Renfrew at the University of East Anglia in Norwich, UK.

view more


Atmospheric drivers of melt on Larsen C Ice Shelf: surface energy budget regimes and the impact of foehn | Journal of Geophysical Research: Atmospheres


Recent ice shelf retreat on the east coast of the Antarctic Peninsula has been principally attributed to atmospherically driven melt. However, previous studies on the largest of these ice shelves – Larsen C – have struggled to reconcile atmospheric forcing with observed melt.

view more
The impact of wintertime sea-ice retreat on convection in the Nordic Seas | EGU General Assembly Conference Abstracts


The Nordic Seas have a significant impact on global climate due to their role in providing dense overflows to the North Atlantic Ocean. However, the dramatic loss of sea ice in recent decades is creating a new atmosphere-ice-ocean environment where large swathes of the ocean that were previously ice-covered are now exposed to the atmosphere.

view more
Summertime cloud phase strongly influences surface melting on the Larsen C ice shelf, Antarctica | Quarterly Journal of the Royal Meteorological Society


Surface melting on Antarctic Peninsula ice shelves can influence ice shelf mass balance, and consequently sea level rise. We show that summertime cloud phase on the Larsen C ice shelf on the Antarctic Peninsula strongly influences the amount of radiation received at the surface and can determine whether or not melting occurs.

view more
The impact of wintertime sea-ice anomalies on high surface heat flux events in the Iceland and Greenland Seas | Climate Dynamics


The gyres of the Iceland and Greenland Seas are regions of deep-water formation, driven by large ocean-to-atmosphere heat fluxes that have local maxima adjacent to the sea-ice edge. Recently these regions have experienced a dramatic loss of sea ice, including in winter, which begs the question have surface heat fluxes in the adjacent ocean gyres been affected?

view more
Atmospheric sensitivity to marginal‐ice‐zone drag: Local and global responses | Quarterly Journal of the Royal Meteorological Society


The impact of a physically based parametrization of atmospheric drag over the marginal ice zone (MIZ) is evaluated through a series of regional and global atmospheric model simulations. The sea‐ice drag parametrization has recently been validated and tuned based on a large set of observations of surface momentum flux from the Barents Sea and Fram Strait.

view more

powered byPowered By